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Higher-order collocation procedures resulting in tridiagonal matrix systems are derived 
from polynomial spline interpolation and by Hermitian (Taylor series) finite-difference 
discretization. The similarities and special features of these different developments are 
discussed. The governing systems apply for both uniform and variable meshes. Hybrid 
schemes resulting from two different polynomial approximations for the first and second 
derivatives lead to a nonuniform mesh extension of the so-called compact or Pad& difference 
technique (Hermite 4). A variety of fourth-order methods are described and the Hermitian 
approach is extended to sixth-order (Hermite 6). The appropriate spline boundary condi- 
tions are derived for all procedures. For central finite differences, this leads to a two- 
point, second-order accurate generalization of the cornmomy used three-point end-difference 
formula. Solutions with several spline and Hmite procedures are presented for the 
boundary layer equations, with and without mass transfer, and for the incompressible 
viscous flow in a driven cavity. Divergence. and nondivergence equations are considered 
for the cavity. Among the fourth-order techniques, it is shown that spline 4 has the smallest 
truncation error. The spline 4 procedure generally requires one-quarter the number of 
mesh points in a given coordinate direction as a central finite-difference calculation of equal 
accuracy. The Herrnite 6 procedure leads to remarkably accurate boundary layer solutions. 

1. INTFX~D~JCTI~N 

Three point finite-difference1 discretization has formed the basis for the over- 
whelming majority of numerical solutions of the equations of fluid mechanics. For 
uniform meshes these procedures are typically second-order accurate in the mesh 
width h. A decrease in order of accuracy results for nonuniform grids. A wide variety 
of temporal or marching integration schemes have been developed and these include 
explicit (one step or two step methods) or implicit procedures. For the latter, which 
generally have better stability properties, the primary advantage of the three-point 
differencing is that the resulting algebraic matrix system is of a block-tridiagona12 

* This research is sponsored by the Air Force Office of Scientific Research, USAF, under Grant 
No. AFOSR 74-2635 Project No. 9781-01, and in part by the NASA Langley Research Center under 
Contract No. NAS 1-13885. 

1 All future references to finite differences imply second-order accurate central differences. 
* The blocks are 2 x 2 for the fourth-order methods and 3 x 3 for the sixth-order methods. 

217 
Copyright 0 1977 by Academic Press, Inc. 
All rights of reproduction in any form reserved. ISSN 002 l-999 t 



218 RUBIN AND KHOSLA 

form; therefore, an efficient and well developed two-pass algorithm [l] can be applied 
to invert the matrix operator. 

Recently, a number of higher-order numerical methods have been proposed. The 
obvious extension is to five-point differencing which leads to a fourth-order accurate 
system. Unfortunately, for implicit integration the matrix system is pentadiagonal 
and, therefore, the boundaries require special consideration. In addition, the 
truncation error is considerably larger than that found with the spline and Hermite 
methods to be discussed. Graves [2] has proposed a five point partial implicit proce- 
dure that simplifies the inversion process; although this method is inconsistent in the 
transient it can be useful for time asymptotic solutions. 

A second class of collocation procedures which are also fourth-order accurate for 
uniform meshes and which retain a 2 x 2 block-tridiagonal form for the governing 
matrix system have recently been proposed. These Hermite or spline collocation 
techniques treat both the functional values and certain derivatives as unknown at 
the three collocation points. These procedures generally result in a somewhat lower 
truncation error than that found with a five-point functional discretization and can be 
derived from appropriate Taylor series expansions (Hermite) or polynomial inter- 
polation (spline). In the former category we have the PadC approximation of Kreiss 
or so-called compact scheme [3], the Mehrstellung [4] formulation and Hermitian 
finite-difference developments of Adam [5] and Peters [6]. In the latter group are the 
spline collocation methods described by Rubin and Graves [7] and Rubin and 
Khosla [8]. In addition, a spline-on-spline technique is shown to result from a hybrid 
formulation. 

The purpose of the present analysis is (1) to clarify the relationship between the 
various spline and Hermite developments, (2) to derive the Hermite block-tridiagonal 
system for a nonuniform mesh, since all previous developments are for uniform 
meshes,3 (3) to extend the Hermite phjlosophy in order to develop a variable mesh 
sixth-order block-tridiagonal procedure, (4) to briefly review the spline interpolation 
method, develop this collocation procedure for several new polynomial forms resulting 
in block-tridiagonal systems, and to demonstrate that, in fact, all of the results obtained 
by the Hermite development can be recovered by appropriate spline polynomial inter- 
polation. Finally, (5) the additional boundary conditions that are required for these 
higher-order procedures are presented. For Anite differences, a second-order accurate 
two-point boundary condition is derived. A less accurate end-difference formula can 
be recovered by using extrapolation. The use of polynomial interpolation for higher- 
order temporal integration is discussed in Ref. [23]. Comparative solutions using 
second-order accurate finite differences and spline and Hermite formulations are 
presented for the boundary layer on a flat plate, boundary layers with uniform and 
variable mass transfer, and the viscous incompressible Navier-Stokes equations 
describing the flow in a driven cavity. Divergence and nondivergence formulations 
are described for the cavity. 

S Adam [5] has also derived, independently, the nonuniform mesh extension of the Hermite 4 
method. The authors are grateful to one of the reviewers for bringing this reference to our attention. 
However, the present approach brings out several additional features not presented by Adam. 
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2. POLYNOMIAL SPLINE INTERPOLATION 

Consider a mesh with nodal points x, such that 

a = x,, -c x1 -c a.. -c xN < x~+~ = b. 

Define the mesh width hj = xj - Xj-1, with (TV = u = hi+r/hj . Consider a function 
u(x) such that at the mesh points x, , we specify U(Xj) = Uj . For the purposes of the 
present analysis we define the polynomial spline S(xj ; n, k) = S(n, k), such that at 
the mesh points xj we prescribe S(Xj ; n, 7~) = Uj . S(n, k) is an nth order polynomial 
defined on any interval [ j - 1, j] and in the set Cn--k[a, b]; k is defined as the deficiency 
of the polynomial spline; i.e., we are considering an nth order polynomial having 
n - k continuous derivatives on [a, b]. 

The so-called simple spline [l] has deficiency k = 1. The familiar cubic spline is a 
cubic polynomial of deficiency one or S(3, 1). For a more detailed discussion of the 
properties of polynomial splines see, for example, Ref. [l]. 

Cubic splines have been widely used for curve fitting and interpolation purposes, 
but only recently has spline collocation been adapted for the numerical solution of 
ordinary [9, lo] and partial differential equations [7, 8, 111. These procedures have 
been applied to the equations of fluid mechanics by Rubin and Graves [7] and Rubin 
and Khosla [8]. In these papers the spline collocation technique is described for the 
basic cubic spline S(3, 1) as well as a higher-order accurate quintic spline of deficiency 
three S(5, 3). The former has been termed spline 2 and the latter spline 4. In addition, 
in Ref. [8] it is shown that the basic three-point finite difference discretization formulas 
can be obtained by considering the quadratic spline of zero deficiency, i.e., S(2,O). 

The general spline interpolation procedure of Refs. [7, 81 can be summarized as 
follows. An nth order polynomial is specified on the interval [,j - 1, j]. The n + 1 
constants are related to the functional values u5-, , Uj , as well as certain spline 
derivatives rnjel , mj , M,-, , Mj . m5 , M, are the spline derivative approximations 
to the functional derivatives U’(X~), u”(xJ, respectively. A similar procedure is con- 
sidered on the interval [j, j + 11. Continuity of derivatives is then specified at xi . 
This process results in two coupled equations for mj , Mi , j = l,..., N. Boundary 
conditions are required at j = 0 and j = N + 1. The system is closed by the governing 
differential equation for U(Xj), where all derivatives are replaced by their spline 
polynomial approximations m5 , Mj . The details of this procedure for spline 1, 2, 
4 are given in Refs. [7, 81 where a variety of explicit, implicit, two step, relaxation and 
ADI methods are explored. 

This spline procedure can be applied to other polynomials of other orders and 
deficiencies and thereby a variety of systems can be derived. Since the equations of 
fluid mechanics are second-order we restrict our attention to polynomial splines 
defined solely by the functional values and the spline first and second derivatives at 
the nodal points. In addition, only those polynomial splines resulting in at most 3 x 3 
block-tridiagonal matrix systems are considered. In this regard, in addition to splines 1, 
2, and 4, i.e., S(2,0), S(3, l), S(5, 3), which have previously been described, the 
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equations governing the spline derivatives mj , Mi for S(4,O) and S(5, 1) have been 
evaluated. All of the governing systems for the various procedures are now specified. 
The spline polynomial on [j - 1, j] is also discussed. 

1. Spline formulations. Consider the polynomial spline, on [j - 1, j], 

S(x; n, k) = i A#, 
i=O 

t = (x - XjJhj ; (1) 

at the nodes specify 

S(xjel ; n, k) = uidl ; S(xj ; n, k) = u, . (2) 

In addition, in order to specify the Ai values, we require some or all of the conditions 

s’(xjel ; n, k) = rnjel , (38 
S’(xj ; n, k) = mj , (3 

S”(X~-~ ; n, k) = M,-, , (44 
S”(xj ; n, k) = AI, , (4’3 

where mj , Mi are the spline derivative approximations of u’(x), U”(X), respectively. 
The specific relationships (2)-(4) depend on the order and deficiency of polynomial (1). 
In addition, depending upon the deficiency of a particular spline procedure, the 
continuity of various derivatives at x j leads to the necessary relationships between the 
values of u1 , m, , and Mr for 1 = j - 1, j, and j + 1. A block tridiagonal system 
results. The various forms for different polynomials are presented in Table I. 

Other polynomial splines can be considered, however, for polynomials of fifth or 
lower order, the spline formulations presented herein appear to be the most efficient. 
For higher-order splines, we require that the third- or higher-order spline derivatives 
be specified in the evaluation of the Ai in (1). These formulations are not discussed 
here, although the tridiagonal sixth-order accurate system for Mj derivable from 
S(6, 0) is presented later in this report. 

For the polynomial spline formulations presented here, the truncation errors 
T(hJ for the various spline derivatives mj and Mi are depicted in Table II. We recall 
that 

m, = u'(xj) + WI,), 

Mj = d(Xj) + T(hj). 

For completeness the truncation errors T(hJ are also given for the five-point finite- 
difference discretization with a uniform grid. Note that although these errors are 
fourth order, they are somewhat larger than those obtained with any of the fourth- 
order polynomial spline formulations. 

For u = 1 the minimum truncation errors of the fourth-order methods are obtained 
with S(5, 3) and S(4,O). 9(4,0) and S2(4, 0) retain fourth-order accuracy for mj even 
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with a variable mesh. The other fourth-order polynomial splines lead to third-order 
accurate formulas for mj with u # 1. S(5, 1) is sixth order for mj with D = 1 and 
fifth order with cr # 1. jMi is fourth order in both cases. A sixth-order formulation 
for Mi (Hermite 6) is given in Table II. From Table II we see that even with h = 1.0 
there is a significant reduction in truncation error with the higher-order methods. 
This is due to smaller numerical coefficients in the error terms. More complete details 
of the derivations of some of the schemes are given in Ref. [23]. 

3. TAYLOR SERIES FORMULATION-HERMITE COLLOCATION 

1. Compact Formulation 

As discussed previously, higher-order finite-difference equations can be derived 
from Taylor series expansions. For a uniform grid, fourth-order accuracy is achieved 
with a five-point expansion formula. The resulting system is pentadiagonal with 
implicit integration procedures. Recently, it has been shown that a compact [3] or 
PadC approximation transforms the pentadiagonal system for the functional values 
at the nodes to a 3 x 3 block-tridiagonal system for the functional values and their 
derivatives at the nodes. 

It has been observed [3] that with 

D*uj = (&+1/O $- (a2 - 1) 4/u - 0%J/((l + ‘-‘I hA (5c) 

fir CI uniform mesh, the five-point difference discretization is of the form 

m5 = (1 - (h2/6) D+D-)(uj+l - uj-3/2h, 

Mj = (1 - (h2/12) D+D-)(D+D-u,). 

The truncation errors are given in Table II. These expressions can be rewritten with a 
Pad6 or compact approximation such that 

&*+I - u,-,)/2h 
mj = 1 + (h2/6) D+D- ’ 

D+D-q 
M3 = 1 + (h2/12) D+D- ’ 

(64 

(W 
or 

(1 + (h2/6) D+D-) m3 = (Uj+l - uj-,)/2h, (74 
(1 + (h2/12) D+D-) Mj = D+D-uj . (7b) 

This results in a fourth-order block-tridiagonal interior point system for the function uj 
and the derivatives mi , iWi . As before, the system is closed with the differential 
equation and appropriate boundary conditions. 
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System (7) has appeared in a number of places [3] and is termed compact [4], 
Mehrstellung [5], and Hermitian [6] differencing. System (7) is fourth order with a 
somewhat smaller truncation error than the five-point difference equations. Equations 
(7) have preoiously been observed in the spline analysis presented herein (see S(4,O)). 
Therefore, this compact formulation is the result of two different polynomial spline 
formulations for mj , iVfj . Derivation (7) does not provide the simpler expressions 
relating the derivatives mj , Mi . These expressions are particularly useful in consider- 
ation of boundary conditions and in order to eliminate mj and, thus, reduce the size 
of the governing matrix system. 

2. Hermitian Collocation 

Alternate derivations of the spline formulations are possible with finite three-point 
Taylor series expansions; e.g., 

%+l = uj + hj+lus + h~+lua& + hT+luzw/6 + h~+lUmm/24, (84 

Uj-1 = Uj - hju, $ hj’uJ2 - hj3u,J6 + hj4u,zz.J24, (8’9 
where 

m3 = u,, Mj = U,, s 

Using Taylor series expansions for m and M, and depending upon the treatment of 
higher-order derivatives, a variety of fourth-order schemes can be derived. Adam [ 151 
has recently presented an alternate derivation of Hermite 4. His procedure does not 
bring out the hybrid character of the compact scheme. The expansion can be further 
extended to derive a variable grid sixth-order method (see Table 1) resulting in a 
block 3 x 3 system. The details of these derivations are given in Ref. [23]. These 
schemes and their relationship with polynomial spline procedures are also included 
in Table 1. 

Therefore, it is possible to derive the polynomial spline results of Section 2 with an 
Hermitian discretization procedure. Moreover, hybrid systems, which represent 
approximations resulting from multiple spline formulations, can also be conceived. 
One of these hybrid systems is the variable mesh extension of the so-called Pad6 
or compact differencing scheme. The truncation errors for all possible systems can be 
obtained from Table II. Finally, the hybrid systems result in a block-tridiagonal form 
of mj , Mj . The simpler relations relating mj directly to Mj found in the polynomial 
spline formulations are not obtained. This concept has been extended to a sixth-order 
system in Hermite 6. Higher-order approximations have not been considered. 

4. BOUNDARY CONDITIONS 

In all of the techniques described in the previous sections the governing system is 
at most (3 x 3) block tridiagonal for Uj , m3 , and M3 . Usually one set of boundary 
conditions for either u1 ,4 m1 , or a linear combination is prescribed. The additional 

4 similar considerations apply to the other boundary, i.e., uN , mN , and i& , etc. 
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“spline boundary conditions” are obtained from the governing equations and/or 
the interpolation polynomial. For spline 2, the additional boundary condition is 
obtained with the general two-point spline relations given in Table I. A more detailed 
discussion is given in Ref. [7]. A similar procedure can be considered for spline 4. 
Some additional modifications are required. These are described in Ref. [8]. For the 
other spline or Hermite procedures, general two-point formulas do not exist; therefore, 
an additional relationship between u1 , m, , and MI , etc., is required. In this section, 
these spline conditions are obtained directly from the interpolation polynomials. 
For spline 2, 4 this procedure would simply lead back to the two-point relationships 
between u, m, and M. 

A review of the boundary conditions follows. 

Spline 2. (0 = 0) In this case Mj = Ki . The prescribed boundary conditions 
along with the equations relating m, M and u, and the governing equation completely 
determine the required boundary values for u1 , m, , and MI . It should be noted that 
the requirement of the additional boundary conditions is not relaxed even if the 
governing (3 x 3) block is reduced to a single tridiagonal system for Mj , as presented 
in Ref. [7]. 

Spline 4. In this formulation the (3 x 3) blocks relate uj , mj , and Kj . The 
boundary conditions on u1 , ml , and MI can be obtained as with spline 2. However, 
a boundary condition for Kl is required. A third-order accurate condition for Kl was 
obtained in Ref. [8] by using the extrapolation, 

(um), - (uzz)~ = MS - MI = & - & . 

In order to increase the accuracy of this boundary condition, a fourth-order extra- 
polation is used here. Therefore, with u = 1, 

M3-2Mz+Ml=K3-2Kz+Kl 
or 

Kl = Ml - 2G, + G, = Ml - h,2(u’V),/12. (9 

For the other formulations a two-point relationship between (u, m, M), and 
(u, m, M), can be obtained from the interpolation polynomial. For the finite difference 
or spline 1 approximation this procedure produces a two-point second-order accurate 
formula which facilitates the application of derivative boundary conditions. 

Spline 1. As shown in Ref. [8], 

S(X, 2, 0) = Uj+,C + Uj(1 - t) - [Uj+l - Uj - h,+,m,] t(l - t) (10) 

on the interval (j, j + 1). Differentiating twice we obtain forj = 1 

us - u1 - h,m, - (hz2/2) Ml = 0. (11) 

Surprisingly this boundary condition has not been used, to the authors’ knowledge, 
for finite-difference calculations. It appears to be a noteworthy improvement on three- 
point end-difference formulas. The truncation error is O(hs). 
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If B lower order expression is used for MI in (1 l), i.e., 

we obtain 

The familiar end-difference formula is recovered with a central-difference approxi- 
mation for m2 in (13). 

9(x; 4,0). Differentiating the interpolation polynomial, we obtain the results 

or 

~j - ~j-1 - (h,/3)(2mj + HI-~) + (hj”/6) h4j = (hj4/72)(~‘“)j-l (14) 

%+l - Uj - (hj+l/3)(2mj + mj+l) - (hT+J6) Mj = -h;+J72(u’v)j e (1% 

A fourth-order relationship results from (14) if the right-hand side is neglected. This is 
equivalent to the one used for spline 2,4. A more accurate relationship can be obtained 
by using a lower-order extrapolation for (ur~)~ or by eliminating (ur~)~ . The latter 
procedure forj = 1 leads to 

u2 - Ul - (h,/Nm, + ml) + (~22/1w42 - Ml) = 0. 06) 

The truncation error in (16) is O(h5). This expression has previously been obtained by 
Hirsh [3]. 

An alternate expression obtained from the polynomial is (17) 

8(uj - Uj-1) - hj(5+ + 3+-l) + h#2Mi = -(hj3/6)(U&-l . (17) 

Equation (16) results from (17) when a lower-order cubic polynomial is used to relate 
mj, Mf, and (u,,& . This procedure, which relies on lower-order polynomials to 
approximate higher derivatives, is noteworthy. 

S2(x; 4, 0). The procedure outlined for Sr(x, 4, 0) can also be utilized to derive 
the required two-point relationship for S2(x, 4,0). Equation (15), is recovered. An 
alternative procedure where both B(x, 4,0) and S2(x, 4,0) polynomials are used also 
leads to Eq. (15). This is similar to the hybrid procedure described previously. 

S(x; 5, I). Three simple two-point relationships which are sixth-order accurate 
can easily be obtained by differentiating the corresponding interpolation polynomial 
three, four, and five times, respectively, 

u2. - u, - p (2% + 3m,) + g (M2 - 3M,) - g (u,$.), = 0, 

~2 - u, - k (7m, + 8m,) + 3 (2M2 - 3A4,) + g (~1”)~ = o, 

(184 

UW 
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and 

u2 - u1 - 1 (m, + m,) + g (M, - Ml) - g (uV)1 = 0. uw 

In Eqs. (18) the three derivatives (u,,,)r , (L@‘)~ , and (zP), can be evaluated by using 
lower-order extrapolation as before or by differentiating the governing differential 
equations. All the two-point relationships derived above can also be obtained by the 
Hermite collocation method. 

Hermite 6. Spline boundary conditions are obtained by Hermitian collocation. 
This leads to a number of two-point formulas. Two of these relations are given below. 

.,-.,-~(?m,+3m,)+~(M, hz3 - 3MJ - 60 bcm)1 - go (uvi), = 0 ‘(19a) 

and 

% - y - 2 (m2 + ml) f +$ (M2 - Ml) - go (~4”)~ - $ (I@)~ = 0. (19b) 

The derivatives (u,,& , (u”), , and (w”I)~ can be obtained by either lower-order 
polynomial extrapolation or by differentiating the governing equations. 

5. EXAMPLES 

A. Similar Bounabry Layer: Zero Mass Transfer 

As a first test of the various polynomial spline or Hermite formulations considered 
in the previous sections, solutions have been obtained for the similarity equations 
governing laminar boundary layer behavior 1121. This example which has been 
discussed in previous spline presentations is included here simply to test the appli- 
cability of the newly developed Hermite 6 procedure and more accurate fourth-order 
boundary conditions discussed earlier 

11” +fu’ + P(l - f’Z> = 0, @ = &h f’ = u. (20) 

Primes denote differentiation with respect to 7, where r) = y(Re/2x)l12; Re is the 
Reynolds number; y is measured normal to the surface, and x along the surface. 
The respective velocities are LI and U. We approximate the derivatives u,‘, uy, f’ with m5 , 
Mj and Tii, , respectively, so that the governing Eqs. (20) become 

Mj f &mj + fl(1 - Ej2) = 0, 
(21) 

iii, = 24,. 

The additional equations for mj , M$, i?i* are given in Sections 2 and 3 for each of the 
polynomial interpolation procedures. The systems are cIosed with the boundary 
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conditions at the surface y = 0 (j = 1) and the edge of the boundary layer y = y, 
orj = N; 

fi = u, = 0, UN = 1. (22) 

The additional boundary conditions on m, , mN , M1 , MN are obtained from Eqs. (20), 
(21), the spline formulas typified by (14)-(16), or from the Hermite expansions (14a) 
and (14b). The boundary conditions used here have truncation errors that parallel 
those for the interior systems shown on Table II. For spline 2 and spline 4, boundary 
conditions have been discussed in greater detail in Refs. [7, 81; however, only third- 
order conditions were used for the spline 4 calculations so that the present results are 
somewhat more accurate. 

The results of the polynomial spline calculations are presented in Table III for a 
variety of uniform and variable meshes. The notation CT = 1.5/l means that 
hj = min{hi , l}, and that (T = 1.5 for hj < 1. The remarkable accuracy of Hermite 6 
with the uniform mesh h = 1 .O is noteworthy. It is apparent that significant improve- 
ments in accuracy are achieved by considering higher-order polynomial splines. 

B. Similar Boundary Layer: Mass Transfer 

In order to carry out more stringent tests of the polynomial methods, boundary 
layers with surface mass transfer are considered. In this section, similarity solutions 
corresponding to mass transfer of the type V, N x -V are evaluated; in the following 
section, uniform injection and suction is specified; i.e., V, N constant so that the 
boundary layer behavior is nonsimilar. The subscript s denotes the surface values. 
With large injection it is possible to blow the boundary layer off of the surface, 
and with large suction the boundary layer becomes very thin and the shear stresses 

TABLE III 

Similar Boundary Layer Solution: f”(0) 

Spline 2 

S(3,l) W4,O) 

Hermite 4 
(compact) 

Spline 4 

w, 3) Hermite 6 

6.0 0.1 1.0 0.469634 0.469597 0.469600 0.469600 0.469600 
20.0 1.0 1.0 0.475357 0.479359 0.473602 0.470730 0.469690 
16.078 0.1 1.5/l 0.464325 0.471666 - 0.470025 - 
16.063 0.05 1.8/l 0.462008 0.469926 - 0.469438 - 

/3 = lb 

6.0 0.1 1.0 1.23227 1.23260 1.23258 1.23259 1.23259 
20.0 1.0 1.0 1.20612 1.20863 1.21260 1.21863 1.23242 

9.448 DO1 1.8/l 1.23604 1.23301 - 1.23299 - 

“f”(0) = 0.469609 (Rosenhead [12]). 
bf”(0) = 1.23259 (Rosenhead [12]). 

58w4/3-a 



232 RUBIN AND KHOSLA 

become quite large. Therefore, these boundary layer profiles are more difficult to 
approximate numerically, and provide more exacting tests of the spline and Hermite 
collocation procedures. 

The equations governing the similar boundary layer with mass transfer are (20) 
and (21). The only change is in the boundary conditions (22) forfi , so that nowfi = K, 
where K < 0 for injection and K > 0 for suction. 

The results of these calculations are shown in Table IV and Figs. 1 and 2. The figures 
show velocity profiles for suction and injection, respectively. The flat plate Blasius 
profile is also included in order to emphasize the extreme thinning of the boundary 
layer with suction and the blowoff obtained with injection. The polynomial solutions 
shown in the figures are in excellent agreement with the numerical values of Emmons 
and Leigh [13]. These profiles are coincident with the polynomial solutions obtained 
with spline 4 or Hermite 6 and, therefore, are not specifically included in the figures. 
The second-order accurate finite-difference results are not as accurate and exhibit 
an erroneous overshoot for the suction case (Fig. 1). For the suction profile only two 
points lie with the boundary layer. More exact comparisons are shown in Table IV. 
Ns denotes the number of grid points within the boundary layer. A variety of results 
for uniform and nonuniform grids are presented. The polynomial solutions retain a 
high degree of accuracy for both the high shear suction and near separated injection 
cases. It is generally found that for equal accuracy, spline 4 requires one-quarter the 
number of mesh points required in finite-difference calculations; e.g., with K = 0.5, 
f”(0) = 0.7394 (81 points with finite difference) and f”(0) = 0.7392 (21 points with 
spline 4). Similar behavior is found with Burgers’ equation [23] and the cavity solutions 
to be discussed later. 

TABLE IV 

f”(0) Similar Boundary Layer with Nonuniform Mass Transfer 

h 0 K F.D. Spline 4 Hermite 6 Ref. 1131 &IN 

0.1 

0.1 

1.0 

0.1 

0.15 

0.3 

0.1 

0.1 

1.0 

0.1 

1.0 

1.0 0.5 0.7394 0.7394 0.7394 35181 

1.5/l. 0.5 0.7842 0.7406 7/21 

1.0 0.5 0.7992 0.7545 3121 

1.5/l. 10.0 7.8903 6.9817 7.1397 2121 

1.5/l. 10.0 7.6869 6.8703 l/21 

1.0 10.0 5.2677 7.2178 7.0425 l/21 

1.0 -0.5 0.2326 0.2326 0.2326 48/81 

1.5/l. -0.5 0.2317 0.2321 9/21 

1.0 -0.5 0.2514 0.2253 5121 

1.5/l. -1.2 0.0041 0.0046 0.0047 12/21 

1.0 -1.2 0.0009 0.0045 0.0048 9121 
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C. Nonsimilar Boundary Layer: Uniform Mass Transfer 

With uniform injection or suction V, = constant, and the following coordinate 
transformation is applied [12]: 

4 = V,(x Re/2)““; rf = y(Re/2x)1/2, 

# = P4Re>‘12f(5, 7); I.4 = *, =f,, 

v = -+,hz = (2Re x)-c112)(f + .$A - oh). 

The governing boundary layer equations become 

%, +fu, + m&n - uu,) = 0 

and the boundary conditions are, at 

7)‘O f=&[,” u=o, 
and 

lim q -+ co, u-+ 1. 

The spline equations are 

Mtj + (fu + ~i(fAtd mi3 = t5i/2)(%2h~ 

where (f& = (fij - ftf;:-,,j)/dS, and with quasi-linearizatoin 

(234 

WV 

Iteration is used for the nonlinear term and the asterisk denotes the values from the 
previous iteration. The equation for C’ij is the same as given by (21). Once again the 
spline derivative boundary conditions are obtained from governing Eq. (23) and the 
derivative relations obtained with the polynomial interpolation procedure given in 
Section 4. 

For 5 > 1, with suction the classical [12] asymptotic suction profile will be 
recovered, i.e., 

u - 1 - exp(-vV,y Re), 
or (24) 

2.4 - 1 - exp(--2q[). 

For injection, there has been some question [14] as to whether the boundary layer will 
separate at a finite 4 location. This question will be addressed in the discussion of 
results which follows. 

The solutions are shown on Tables V and VI and Figs. 3 and 4. With many mesh 
points all of the methods, including finite difference, work quite well. As the mesh size 
is increased the finite-difference solutions begin to deviate from the polynomial results. 

5 The positive sign denotes suction and the negative sign denotes injection. V, is positive in both 
cases. 
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TABLE V 

f”(0) Nonsimilar Boundary Layer with Uniform Suction 

F.D. Spline 4 Hermite 4 

ShoN u(l, 4) f”(O, 0 4594) f”u4 5) UK4 f”a 8 

0.09 

0.49 

0.79 

0.95 

1.0 

0.09 

0.49 

0.79 

0.95 

1.0 

0.09 

0.49 

0.79 

0.95 

1.0 

1.0 

0.1 

0.1 

1.0 

1.5 

1.0 

11 0.5321 

0.7776 

0.9185 

0.9833 

1.0022 

21 0.0628 

0.1253 

0.1761 

0.2038 

0.2125 

61 0.0575 

0.0979 

0.1566 

0.1806 

0.1882 

0.6798 0.5218 

1.0539 0.7357 

1.3270 0.8249 

1.4580 0.8536 

1.4970 0.8600 

0.6340 0.0576 

1.3119 0.1119 

1.8898 0.1556 

2.2151 0.1792 

2.3184 0.1866 

0.5807 0.0575 

1.0167 0.1122 

1.6804 0.1563 

1.9629 0.1802 

2.0526 0.1877 

0.5829 0.5228 0.5874 

1.1769 0.7369 1.1860 

1.6775 0.8235 1.7202 

1.9751 0.8491 2.0599 

2.0745 0.8544 2.1777 

0.5817 0.0577 0.5823 

1.1748 0.1120 1.1762 

1.6822 0.1557 1.6828 

1.9678 0.1792 1.9675 

2.0587 0.1866 2.0581 

0.5807 0.0575 0.5807 

1.1781 0.1122 1.1780 

1.6902 0.1563 1.6900 

1.9790 0.1817 1.9970 

2.0709 0.1877 2.0707 

TABLE VI 

f”(0) Nonsimilar Boundary Layer with Uniform Blowing 

F.D. Hermite 4 Spline 4 

f  hoN 4594) f”(Q 6) UC& 4 f”@, n 455 41 f  “(0, 0 

0.09 1.0 1.0 31 0.4004 0.4101 0.3859 0.3587 0.3865 0.3618 

0.29 0.2429 0.1866 0.2192 0.1619 0.2185 0.1585 

0.59 0.0367 -0.0065 0.0128 0.0070 0.0127 0.0069 

0.79 1.7 x 10-1 8.8 x 10-B 

0.09 0.1 1.03 81 0.0364 0.3610 0.0364 0.3607 0.0364 0.3607 

0.29 0.0172 0.1672 0.0172 0.1670 0.0172 0.1670 

0.59 6.8 x lo-‘ 6.3 x 1O-s 6.7 x lo-’ 6.4 x lO+ 6.7 x 1O-4 6.4 x lo-* 

0.79 4.3 x 10-o 3.9 x 10-s 5.5 x 10-o 5.1 x 10-B 5.5 x 10-o 5.1 x 10-B 

0.84 2.7 x IO-” 2.4 x IO-” 4.4 x 10-l’ 4.0 x lo-‘O 4.4 x lo-” 4.0 x 10-l” 
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FIG. 3. Shear with uniform suction. 

Additional results are presented in Ref. [23]. The surface shear stress,f”(& 0), obtained 
with the finite-ditference method becomes very inaccurate for coarse meshes. For the 
suction calculation, the asymptotic solution (24) gives for 5 > 1 

f”(0) = 2.5 

Therefore, at 5 = 1.0, f”(0) M 2. The spline 4 results very closely approximate this 
value; these solutions are in all cases more accurate than the Hermite 4 results. 
Table V presents the shear values for both the coarse and fine grids. Also shown is 
the velocity one grid point away from the surface. The asymptotic solution (24) gives 
at E = 1.0 

u(O.1) = 0.1812 
or 

~(1.0) = 0.8647. 

Once again the spline 4 results are best. 
Detailed injection solutions are shown on Table VI. For the very fine grid, there was 

no indication of separation as inferred in Ref. [14]. This was true for all calculations. 
The shear decreased but never vanished. For the coarser grid the finite-difference 
solution did lead to a separation point, but the polynomial solutions still did not 
separate. This behavior is also depicted on Fig. 4b. The conclusion obtained from 
these results would appear to be that separation does not occur with uniform injection; 
instead, the shear decreases asymptotically to zero for large values of 5. 
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D. Incompressible Flow in a Cavity 

D.l. Nondivergence form. As a final test problem the laminar incompressible 
flow in a driven cavity is considered. This problem has been studied extensively by 
many investigators, see Ref. [15]. The governing equations in terms of a vorticity 
and stream-function system are 

*,a! + Ai* = 5, (25) 

ii + u&i + vii = WRe>(L + L), (26) 

where # is the stream function, 5 is the vorticity; u = t,Ly, and v = -& are the 
velocities in the x and y directions, respectively. The boundary conditions and 
geometry are shown in Fig. 5. 

Solutions of (26) are obtained with a predictor-corrector procedure described in 
Ref. [16]. For Poisson equation (25) a modified version of Buneman’s direct solver [ 171 
is used. The spline approximations of (25) and (26) in nondivergence form are 

5i;" - 52 + u.,(mqn+l + v .(p)R+l- 1 
At 13 t3 ta 21 - Re [Lij + M&y+l (27’3 

FIG. 5. Schematic of the driven cavity. 

where iii and Lj, denote the polynomial approximations of ( ), and ( ),, , respectively. 
The superscripts denote the specific function. The spline boundary conditions are 
obtained by satisfying (27b) at the walls. The details of this procedure have been 
previously described in Refs. [4, 7,8]. 
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Solutions have been obtained for a square cavity with Re = 100. A 17 x 17 point 
mesh has been considered The results are shown in Table VII and Fig. 6. Table VII 
compares the Hermite 4 and spline 4 solutions with results obtained in previous 
studies [7]. The maximum value of the stream function, of the vortex center, and the 
vorticity at the midpoint of the upper moving wall are presented. It is significant that 
with a 17 x 17 mesh the spline 4 solutions parallel those obtained with a 57 x 57 point 
finite-difference discretization. Moreover, the spline 4 results are very close to the 
extrapolated values as projected for the nondivergence equations. This behavior 
carries over to the velocity profile shown on Fig. 6. 

D.2. Divergence form. The governing equations in conservation form are 

*m + *w = 59 

The spline approximation to these equations becomes, 

(27~) 

where liiii = (#I& and ii, = (~5)~ . 
The method of solution parallels that for the nonconservation equations. Solutions 

have been obtained for Re = 100 and these results are also included in Table VII 
and Fig. 6. There is a significant improvement in the results, which is particularly 
noteworthy, for the coarse meshes. The one to four mesh point correspondence 
between the spline and finite-difference solutions with equal accuracy is maintained. 
The 17 x 17 spline 4 solution is remarkably accurate. For the two-dimensional 
problem considered here, this in effect leads to a sixteen-fold reduction in the number 
of mesh points. Since the convergence rate is approximately inversely proportional 
to the square of the number points a significant reduction in computational time is 
possible. Due to the fact that the spline and finite-difference calculations were made 
independently and on different computers a meaningful time comparison cannot be 
included. However the present spline calculations (17 x 17) did require considerably 
less time and storage than did the (65 x 65) finite-difference results, and the solutions 
are in close agreement. Away from the corners, even the 9 x 9 solutions are excellent. 
Due to the large gradients near the corners, the 9 x 9 mesh is too coarse and somewhat 
larger errors result. 

Finally, the divergence form allows for the solution of the cavity flow at much 
larger Reynolds numbers. This has been demonstrated previously for the finite- 
difference calculations [ 151 and carries over to the spline development as well. Solutions 
have been obtained for Re = 1000. For Re = 1000, the solutions are moderately 
accurate and given in Table VIII and Fig. 7, where finite-difference results are also 
included [24]. The one to four correspondence is approximately satisfied; however, 
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TABLE VII 

Comparison of Results for the Square Cavity, Re = 100 

(a) Vorticity at the Center of the Moving Surface 

Calculation method 
Number 
of points 

Moving surface 
center point 

vorticity 

Spline 2 
Spline 2 
Finite difference 
Finite difference 
Extrapolated 

finite difference 
Finite difference”** 
Finite differencea** 

Finite dilTerencea*b 
Spline 4” 
Spline 4” 
Hermite 4 
Spline 4 

15 x 15 7.138 
29 x 29 6.688 
15 x 15 8.916 
57 x 57 6.696 

- 6.548 
17 x 17 7.376 
65 x 65 6.609 

128 x 128 6.574 
17 x 17 6.532 

9x9 6.603 
15 x 15 6.927 
17 x 17 6.610 

(b) Maximum Stream Function 

Calculation method 
Number 
of points 

Maximum 
stream function 

Spline 2 
Spline 2 
Finite difference 
Finite difference 
Extrapolated 

finite difference 
Finite differencea** 
Finite di&rence~** 
Finite differencenIb 
Spline 4” 
Spline 4a 
Hermite 4 
Spline 4 

15 x 15 
29 x 29 
15 x 15 
57 x 57 

-0.1053 
-0.1043 
-0.0874 
-0.1013 

- -0.1022 
17 x 17 -0.0987 
65 x 65 -0.1032 

128 x 128 -0.1034 
17 x 17 -0.1035 
9x9 -0.1072 

15 x 15 -0.1014 
17 x 17 -0.1023 

a Divergence form. 
* Reference [24]. 
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TABLE VII1 

Comparison of Results for the Square Cavity, Re = 1000 

(a) Vorticity at the Center of the Moving Surface 

Calculation method 
Number 
of points 

Moving surface 
center point 

vorticity 

Spline 4’ 17 x 17 14.254 
Finite difference” 65 x 65 16.198 
Finite difference” 17 x 17 21.508 

(b) Maximum Stream Function 

Calculation method 
Number Maximum 
of points stream function 

Spiine 4” 17 x 17 0.115 
Finite difference+ 65 x 65 0.114 
Finite difference= 17 x 17 0.080 

(c) Vorticity at the Vortex Center (x, , y,) 

Calculation method 
Number 
of points 

Vorticity at 
Vortex Center 

(x0 , Ye) 

Spline 4” 17 x 17 1.828 (0.56,0.56) 
Finite difference” 65 x 65 1.985 (0.52,0.56) 
Finite difference” 17 x 17 2.093 (0.56,0.56) 

@ Divergence form. 

the 17 x 17 grid is really too coarse for Re = 1000 and errors of about 10 % are 
incurred. The stream function at the vortex center is within 1 y0 of the finite-difference 
value (65 x 65). Finally, the vorticity values, 1.8-2.2, in the core region are quite 
close to the infinite Re limit of 1.886. 

6. SUMMARY 

Polynomial spline interpolation has been used to develop a variety of higher-order 
collocation methods. Only those polynomials resulting in tridiagonal, or at worst 
3 x 3 block-tridiagonal, matrix systems have been evaluated. The governing systems 
are obtained directly in terms of the functional values and certain derivatives of the 
functional values at the specified nodal points. The development is generally given for 
a nonuniform mesh, for which a high degree of accuracy is maintained. 
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Recently for a uniform mesh a so-called Padt, compact, Mehrstellung or Hermitian 
finite-difference procedure, which is 3 x 3 block-tridiagonal, has been proposed. 
It is shown that this formulation is a hybrid method resulting from two different 
polynomial splines. However, the Pad6 approximation is derived from a five-point 
discretization formula and might be difficult to extend to nonuniform mesh systems. 
The hybrid spline results apply to variable meshes. Also, the compact system of 
equations does not include certain simple relations between the first and second 
derivative approximations that are obtained from the polynomial spline interpolation 
formula. These relations are useful for reducing the size of the matrix system and 
thereby the computer time; in certain instances, boundary conditions can more easily 
be satisfied with these equations. 

Finally, from three-point Taylor series expansions and Hermitian descritization 
of the functionals and their derivatives at the nodal points, an alternate derivation of 
the compact differencing scheme is presented. As only three nodal points are con- 
sidered here, this procedure is less cumbersome than the Pad6 formulation and has 
been considered for nonuniform meshes and to develop systems with even higher-order 
truncation errors. Significantly, all of the polynomial spline block-tridiagonal systems 
can be recovered with this formulation. Moreover, a sixth-order (hybrid polynomial 
spline) 3 x 3 block-tridiagonal scheme has been devised. There does not appear to be 
any particular advantage of the polynomial spline formulation over the Hermitian 
discretization derivation. Polynomial interpolation can also be used to develop 
higher-order implicit temporal integration schemes, which have previously been 
developed by Hermite collocation, see Ref. [23]. 

The boundary conditions for all of the higher-order procedures have been The also collocation, been p144  Tc -0.0462  TD 3  9 Tj
 oc10376  Tw2la38r1lr -e see 0.242  Tc 0.0714  Tw (can ) Tj
0  T1  Tc92he 
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